--> --> --> --> --> --> --> --> < -->

SCHEDULE

Workshops (November 24)

Time: 10:00 – 17:30 (GMT+2)

9:00 – 10:00 Registration
10:00 Start of the workshop
11:30 – 11:40 Break
13:00 – 14:00 Lunch
15:20 – 15:30 Break
17:00 End of the workshop

Stream Processing Essentials

Nicolas Fränkel & Vladimir Schreiner

Hazelcast

Read More »

Building a Data Catalog

Mandy Chessell

ODPi TSC & ODPi Egeria & IBM, UK

Read More »

1st Conference Day (November 25)

Time Track 1 Track 2 Track 3 Track 4
08:00 - 09:00 (GMT+2) Registration
09:00 - 10:00 (GMT+2)
OPENING KEYNOTE:
Growth Reinvented - Turn Your Data and AI into Money
Mika Ruokonen
Futurice
Slides
10:05 - 10:50 (GMT+2) Streaming Processing - an Overview of the Concepts, Architecture and Technology of Doing Data Science on Real-Time Data
Bas Geerdink
Aizonic
Track 1
Analyzing Public Data About User Queries on Search Engine to Predict Trends and Evaluate Markets
Paolo Dello Vicario
ByTek
Slides
Track 2
Redis: a Multi-Model DB for IoT and Beyond
Dr. Christoph Zimmermann
Redis Labs
Slides
Track 3
Covid-19: Big Data Analytics and Artificial Intelligence
Cristian Randieri
Intellisystem Technologies
Track 4
10:50 - 11:05 (GMT+2) Morning Break
11:05 - 11:50 (GMT+2) Processing Billions of Events a Day Using Kafka and Kafka Streams
Carlos Manuel Duclos-Vergara
Schibsted
Track 1
Designing and Building Data Science Solutions
Jonathan Leslie
Neri Van Otten
Pivigo; Spot Intelligence
Slides
Track 2
TBA
Data Governance From an Engineering Perspective
Valdas Maksimavicius
Cognizant
Track 4
11:55 - 12:40 (GMT+2) Real-Time Stream Processing for Insurance & Health Care With Kafka, Kafka Streams and Multi-Runtime Microservices
Cristian Prevedello
PREVINET
Slides
Track 1
Exoplanet Detection using Machine Learning
Abhishek Malik
Hawk:AI
Track 2
Data Versioning - What Does it Mean?
Einat Orr
Treeverse
Track 3
The GDPR Challenges to Big Data, and How to Overcome Them
Silvan Jongerius
TechGDPR
Track 4
12:40 - 13:40 (GMT+2) Virtual Café: Preparing Data for Analytics
Sonal Goyal
Virtual Cafés
Lunch Break
13:40 - 14:25 (GMT+2) Real-Time Streaming with Python ML Inference
Marko Topolnik
Hazelcast
Slides
Track 1
Advanced Analytics in the Industry
Antía Fernández
GRADIANT
Track 2
An Experiment in Continuous Deployment of JVM applications
Nicolas Fränkel
Hazelcast
Track 4
Adding AI Cloud Services to Your On-Prem Data Workflows for NLP & Content Enrichment
Daniel Wrigley
SHI GmbH
Slides
Track 4
14:30 - 15:15 (GMT+2) Introduction to FLaNK Stack
Timothy J Spann
Cloudera
Slides
Track 1
5 Pillars of User-Centric Analytics
Alex Sanginov
ServiceNow
Track 2
Azure Synapse Analytics Overview
James Serra
Microsoft
Slides
Track 3
Big Data Architecture in the Advertising Industry
Marçal Serrate
Hybrid Theory
Track 4
15:15 - 15:30 (GMT+2) Afternoon Break
15:30 - 16:15 (GMT+2)
CLOSING KEYNOTE:
Making Data Downtime a Pillar of Your Data Strategy
Barr Moses
Monte Carlo

2nd Conference Day (November 26)

Time Track 1 Track 2 Track 3 Track 4
08:00 - 09:00 (GMT+2) Registration
09:00 - 10:00 (GMT+2)
OPENING KEYNOTE:
Introduction to Data Streaming
Nicolas Fränkel
Hazelcast
10:05 - 10:50 (GMT+2) Kafka as a Platform: the Ecosystem from the Ground Up
Robin Moffatt
Confluent
Track 1
From Internet Access Devices Usage to Behavioural Model
Tomasz Bąk
Digital Fingerprints
Slides
Track 2
Supercharge your Data Analytics with BigQuery ML
Marton Kodok
REEA
Track 3
Stopping Public Transport Coronavirus Infections with Big Data
Tim Frey
iunera GmbH & Co. KG
Slides
Track 4
10:50 - 11:05 (GMT+2) Morning Break
11:05 - 11:50 (GMT+2) Towards Enterprise-Grade Data Discovery at ING with Apache Atlas and Amundsen
Verdan Mahmood
ING Bank
Track 1
Data Science Case Studies and Formulation of AI Roadmap
Kane Wu
ThinkCol
Track 2
Interactive BI Analytics with Presto
Łukasz Osipiuk
Karol Sobczak
Starburstdata
Slides
Track 3
The application of Machine Learning to the Modelling of Time-Series of Atmospheric Pollution Data
Cristian Randieri
Intellisystem Technologies
Track 4
11:55 - 12:40 (GMT+2) Kotlin for Apache Spark: Love to Frankenstein's Monster
Pasha Finkelshteyn
JetBrains
Track 1
From the Earth to the Moon: Lessons from the Space Race to Apply in Machine Learning Projects
Diego Hueltes
RavenPack
Slides
Track 2
Scalable ML Pipelines for Enterprise Data Mastering
Sonal Goyal
Nube Technologies
Slides
Track 3
From Zero to Hero with Kafka Connect
Robin Moffatt
Confluent
Track 4
12:40 - 13:40 (GMT+2) Virtual Café: Ad-Hoc Analytics
Pasha Finkelshteyn
Virtual Cafés
Lunch Break
13:40 - 14:25 (GMT+2) Orchestrating Data Workflows Using a Fully Serverless Architecture
Tomer Levi
Fundbox
Track 1
In the Shallow with AI
Audrey Lobo-Pulo
Phoensight
Track 2
Graph Processing for Open Metadata and Governance
Mandy Chessell
ODPi TSC & ODPi Egeria & IBM
Slides
Track 3
Trust and Quality in the Era of Software 2.0
Yiannis Kanellopoulos
Code4Thought
Slides
Track 4
14:30 - 15:15 (GMT+2) Best Practices for Building Streaming Data Architectures
Ricardo Ferreira
Elastic
Slides
Track 1
A Recipe for Innovation: Recommending Recipes Based on Adventurousness
Kim Nilsson & Robert Grieg-Gran
Pivigo
Track 2
The Intuition Behind the Use of M.L. in Marketing Analytics
Mario A Vinasco
Credit Sesame
Track 3
Fixing the Problems with Face Recognition Using Modern Cryptography Flows
Nezare Chafni
Trueface
Track 4
15:15 - 15:30 (GMT+2) Afternoon Break
15:30 - 16:15 (GMT+2)
CLOSING KEYNOTE:
LF AI and Data - the Home for Open Source AI, BU, DL, ML, and Data Management
John Mertic
Linux Foundation
Slides