BIG DATA CONFERENCE
EUROPE 2021
Online Edition
September 28-30
Online
SCHEDULE
Workshops (September 30)
|
Online | |
---|---|---|
08:40 - 09:00 | |
Developing Performant Data Streaming Applications Using KafkaCarlos Manuel Duclos-Vergara
Spark and HADOOPLidor Gerstel ONNX runtime to serve AI modelsMauro Bennici
Improving Performance and Security in MySQLLukas Vileikis
An introduction to FluxLangRiccardo Tommasini
|
09:00 - 10:30 | | |
10:30 - 10:40 | | |
10:40 - 12:00 | | |
12:00 - 13:00 | | |
13:00 - 14:20 | | |
14:20 - 14:30 | | |
14:30 - 16:30 | |
|
||
---|---|---|
Developing Performant Data Streaming Applications Using KafkaCarlos Manuel Duclos-Vergara Spark and HADOOPLidor Gerstel
ONNX runtime to serve AI modelsMauro Bennici
Improving Performance and Security in MySQLLukas Vileikis
An introduction to FluxLangRiccardo Tommasini
|
||
| ||
08:40 - 09:00 | | |
09:00 - 10:30 | | |
10:30 - 10:40 | | |
10:40 - 12:00 | | |
12:00 - 13:00 | | |
13:00 - 14:20 | | |
14:20 - 14:30 | | |
14:30 - 16:30 | |
1st Conference Day (September 28)
Time | Accenture Booth | |||
---|---|---|---|---|
14:30 - 15:00 (GMT+3) | ALL about Baltic Accenture Data & AI Team / Q&A
Accenture Booth |
Time | Track: Data | Track: Machine Learning | Track: Cloud and Streaming | Track: Varia |
---|---|---|---|---|
08:30 - 09:00 (GMT+3) | Registration | |||
09:00 - 10:00 (GMT+3) |
OPENING KEYNOTE:
Trust Your Data
Mark Grover
Stemma
Data Discovery
Metadata
Amundsen
|
|||
10:05 - 10:50 (GMT+3) |
Rethinking Ingestion: CI/CD for Data Lakes
Einat Orr
Treeverse
Data Lake
Data Versioning
Ingestion
Track: Data
|
ML in Production – Serverless and Painless
Oliver Gindele
Datatonic
MLOps
Serverless
Containers
Tensorflow
Track: Machine Learning
|
Designing Robust Processing System With Redis
Paško Pajdek
Mediatoolkit
Realtime Data Processing
Queueing
Redis
Track: Cloud and Streaming
|
Building a Serverless GraphQL API in 25 Minutes
Maxime Beugnet
MongoDB
Serverless
API
MongoDB
Realm
Track: Varia
|
10:50 - 11:05 (GMT+3) | Morning Break | |||
11:05 - 11:50 (GMT+3) |
Data Observability
Gerard Toonstra
Datafold
Data Observability
Data Lineage
Catalog
Track: Data
|
Machine Learning Helping the Economy
Diana Gabrielyan
Stockmann
ML
Text Mining
Economics
Inflation
Track: Machine Learning
|
The Honest Review of Amazon SageMaker
Wojciech Gawroński
Pattern Match
ML
Cloud
Amazon
SageMaker
Track: Cloud and Streaming
|
DataSecOps: Why You Should Care
Ben Herzberg
Satori
Cloud
DataOps
Security
Data Engineering
Track: Varia
|
11:55 - 12:40 (GMT+3) |
Cloud Computing Anomaly and Threat Detection Using Big Data Analytics and Machine Learning
Ibrahim Muzaferija
Maestral Solutions
Cloud
ML
Anomaly Detection
Support Vector Machines
User Behavior Modeling
Track: Data
|
A Friendly Introduction to Codeless Deep Learning
Kathrin Melcher
Knime
Deep Learning
CNN
Keras
KNIME
Track: Machine Learning
|
The Importance of Performance in Open Source Databases
Lukas Vileikis
Severalnines
Databases
MySQL
Performance
Security
Track: Cloud and Streaming
|
Expanding the Data Team: Analytics Engineers
Victoria Perez Mola
Tier mobility
Team Management
Data Team
Analytics Engineer
Track: Varia
|
12:40 - 13:40 (GMT+3) | Lunch Break | |||
13:40 - 14:25 (GMT+3) |
Graph Data Science: from Theory to Application
Julien Genovese
Data Reply
Graph Data Science
MLlib
Track: Data
|
In-Database Machine Learning with Jupyter
Paige Roberts
Vertica
ML
Data Architecture
Jupyter
Track: Machine Learning
|
Best practices for ETL with Apache NiFi on Kubernetes
Albert Lewandowski
GetInData
ETL
Kubernetes
NiFi
Track: Cloud and Streaming
|
How to Fail in AI Business
Mohammad Hossein Noranian
Esra Tech
AI Business
Case Study
Track: Varia
|
14:30 - 15:15 (GMT+3) |
The Unbreakable Data Pipeline
Herminio Vazquez
IOVIO
Data Engineering
Data Pipeline
PySpark
Track: Data
|
The Intuition Behind Machine Learning In Marketing
Mario A Vinasco
Credit Sesame
ML
Marketing
Advanced Segmentation
Cross Sell Predictions
Track: Machine Learning
|
Real-Time Streaming in Any and All Clouds, Hybrid and Beyond
Timothy J Spann
StreamNative
Streaming
Flink
Pulsar
Nifi
Track: Cloud and Streaming
|
Trends in 2021 - CRPA, AutoML & the Role of DataOps
Barry Walsh
Pairview Group
ML
DataOps
Trends
Track: Varia
|
15:15 - 15:30 (GMT+3) | Afternoon Break | |||
15:30 - 16:30 (GMT+3) |
CLOSING KEYNOTE:
Embracing #AiFirst Enterprise-Wide
Alex Sanginov
ServiceNow
ML
Enterprise AI
Data Science
|
2nd Conference Day (September 29)
Time | Accenture Booth | |||
---|---|---|---|---|
10:05 - 10:50 (GMT+3) | Industrial Use Cases of Data Science
Accenture Booth |
|||
14:30 - 15:00 (GMT+3) | ALL about Baltic Accenture Data & AI Team / Q&A
Accenture Booth |
Time | Track: Data | Track: Machine Learning | Track: Cloud and Streaming | Track: Varia |
---|---|---|---|---|
08:30 - 09:00 (GMT+3) | Registration | |||
09:00 - 10:00 (GMT+3) |
OPENING KEYNOTE:
A Code-Driven Introduction to Reinforcement Learning
Phil Winder
Winder Research
Reinforcement Learning
Cyber Security
|
|||
10:05 - 10:50 (GMT+3) |
Use Visual Studio Code for Your Machine Learning Environments
Kris van der Mast
VaHa
ML
Visual Studio
Python
Azure
Track: Data
|
Neural Networks on the Source Code
Jameel Nabbo
Cybersecurity Researcher, The Netherlands
ML on Source Code
Static Code Analysis
Compilers
Track: Machine Learning
|
Management of a Cloud Data Lake in Practice: How to Manage 1000s of ETLs Using Apache Spark
Josef Habdank
DXC Technology
Data Governance
Azure
Spark
Track: Cloud and Streaming
|
Industrial Use Cases of Data Science
Sana Rasheed
Accenture
Data Science
Predictive Models
Industry Use Cases
Track: Varia
|
10:50 - 11:05 (GMT+3) | Morning Break | |||
11:05 - 11:50 (GMT+3) |
Using Service Level Objective Theory to Design Great Data Products
Emily Gorcenski
ThoughtWorks
Reliability Engineering
Data Mesh
AI
Track: Data
|
Complex AI Forecasting Methods for Investments Portfolio Optimization
Paweł Skrzypek
Anna Warno
AI Investments
ML
Forecasting
Investing
Track: Machine Learning
|
Development of a Kafka-Powered Advanced Stream Commerce Platform
Andrea Spina
Radicalbit
MLOps
Streaming
Kafka
Track: Cloud and Streaming
|
Machine Learning Security
Karol Przystalski
Codete
ML
Security
Track: Varia
|
11:55 - 12:40 (GMT+3) |
Riding the Second Wave - Open Source for Relational Databases
Jan Karremans
EDB Postgres
Databases
Open Source
PostgreSQL
Track: Data
|
Share Massive Amounts of Live Data with Delta Sharing
Frank Munz
Databricks
Data Science
Open Source
Data Sharing
Track: Machine Learning
|
Real Time Streaming Data from AWS MSK Kafka to Cloudera
Lidor Gerstel
Centerity
Hadoop
Databases
ETL
NoSQL
Scala
Track: Cloud and Streaming
|
Keyword search is dead! And so are Solr and Elasticsearch?
Daniel Wrigley
SHI
Natural Language Processing (NLP)
Vector Similarity Search
Solr
Elasticsearch
Track: Varia
|
12:40 - 13:40 (GMT+3) | Lunch Break | |||
13:40 - 14:25 (GMT+3) |
Big or Small Data in the Food Industry?
Antía Fernández
Gradiant
Big Data
Data Analytics
Food Industry
Track: Data
|
The state of MLOps - machine learning in production at enterprise scale
Bas Geerdink
Aizonic
MLOps
Big Data
Machine Learning
Track: Machine Learning
|
Choosing the Right Abstraction Level for Your Kafka Project
Carlos Manuel Duclos-Vergara
Schibsted
Streaming Architecture
Event Processing
Kafka
Track: Cloud and Streaming
|
Architecture vs. Operating Model - A Cloud Conundrum
Federico Fregosi
Contino
End-to-End Tests
Developers
Agile Test Automation
Track: Varia
|
14:30 - 15:15 (GMT+3) |
Building Data Science Products
Valentina Djordjevic
Things Solver
ML
Data Science
Product Development
Track: Data
|
Towards Human-AI Teaming: Challenges and Opportunities of Human in the Loop AI Training
Clodéric Mars & Sagar Kurandwad
AI Redefined
ML
Multi-Agent Systems
Reinforcement Learning
Track: Machine Learning
|
An Introduction to Streaming SQL with Materialize
Marta Paes
Materialize
Databases
Streaming
SQL
Track: Cloud and Streaming
|
Zoom Out: Building a Kickass Engineering Team Remotely
Gad Salner
Melio
Team Management
Agile
Track: Varia
|
15:15 - 15:30 (GMT+3) | Afternoon Break | |||
15:30 - 16:30 (GMT+3) |
CLOSING KEYNOTE:
Translating Data Into Powerful Stories
Juan Venegas
Growth Tribe
Data storytelling
Data Visualisation
|