26-28 November, 2019, Vilnius
Conference is over! See you next year.
Confirmed Talks
Michael Shtelma
Databricks, Germany
Talk
Deep Learning at Scale: Distributed Training and Hyperparameter Search for Image Recognition Problems
Training complex image recognition model on a large dataset using one machine can be long and cumbersome. This talk focuses on methods and libraries, which allow us to train models on a dataset that does not fit into memory, or maybe even on the disk using multiple GPUs or even nodes. The ways of using multiple GPUs and nodes will be discussed and tradeoffs between different approaches will be compared.
Session Keywords
Andy Bitterer
SAP, Germany
Talk
Digital Business: Tomorrow is Already Here
Digital business is about intelligently connecting people, things, and businesses. It’s an infinite world of new possibilities for companies to reimagine their business models, the way they work, and how they compete. New technologies like machine learning, the Internet of everything, blockchain, cloud, and the big data platform will transform value chains to enable completely new ways of doing business and our way of life. Hear how you can deliver a innovative customer experience at scale, with a fully-integrated front- and back-end operations based a solid digital core.
Session Keywords
Stefan Reiser
LINK Institute, Switzerland
Talk
Turning a Wasting into a Learning Culture - Combining NLP and Neural Networks to truly Understand and Predict Customers' Behaviour
Most of the customer feedback of companies around the globe is being wasted, as it is not used to learn, derive insights or to optimize products and processes. At the same time, the amount of customer survey and observation data within companies is growing at heavy speed. The presentation will introduce levers on how to cope with this phenomenon and illustrate, which role Data Science and Machine Learning should Play from an analytical and business perspective.
Session Keywords
Michał Dyrda
Philip Morris International, Poland
Talk
Data Science at PMI - The Tools of The Trade
Data Science is not a one man show. It is a team effort that requires every team member to master the tools of the trade. This is extremely important for effectively putting data science to work in a global organization. In this talk Michal would like to share with you the best practices to start, develop and ship data science products developed inside PMI – the best practices and tools, currently in use by 40+ data scientists across four different location, where data science labs of PMI were established in 2017.
Session Keywords
Magnus Runesson
Tink, Sweden
Talk
Optimize your Data Pipeline without Rewriting it
It is not fast enough! That is one of the more common responses to a data engineer when putting a data pipeline in production. It is easy to dig down into the code and try to optimize it. My experience as a data engineer shows me that it is often easier and more efficient, both in time spent and outcome, to focus on a more holistic view of the pipeline.
Session Keywords
Valdas Maksimavičius
Cognizant, Lithuania
Talk
Making Data Scientists Productive in Azure
Doing data science today is far more difficult that it will be in the next 5-10 years. Sharing, collaborating on data science workflows in painful, pushing models into production is challenging.
Let’s explore what Azure provides to ease Data Scientists’ pains. What tools and services can we choose based on a problem definition, skillset or infrastructure requirements?
Session Keywords
Alexander Slotte
Excella, USA
Talk
Real-Time Data Streaming with Azure Stream Analytics
It’s imperative in today’s world to be able to make split second decisions based on real-time data. Reports based on batch data are great for looking back at trends and potentially making long-term decision, but old data is in many cases already obsolete, and the opportunity to have an actionable impact on the success of a specific process may have been lost.
Session Keywords