
Subhojit Banerjee

DataScientist/DataEngineer, Founder/CTO AbundanceAI

Twitter: @subbubanerjee

Medium: https://medium.com/@subhojit20_27731

Email: subbu@abundanceai.com

Deploying Large (Spark) ML
models and scoring in near-real
time @scale
Running the last mile of the Data Science journey

http://www.abundanceai.com/
https://twitter.com/SubbuBanerjee
https://medium.com/@subhojit20_27731
mailto:subbu@abundanceai.com

2

Big Data* is not easy

3

Big Data* is not easy

Gartner found just 14% of companies surveyed had big data

projects in production in 2015 and unchanged from the year

before and slowly inching towards 15% in year 2016

*Big Data - my apologies for using the term

*Big Data ~ Large unstructured and structured data that can’t fit on a single node

4

Big Data is not easy

● Cloudera: $261M in revenue, $187M in losses (down from $205M the year

before, the only company to narrow its loss)

● Hortonworks: $184M in revenue, $251M in losses (up from $180M the year

before)

● Alteryx: $85M in revenue, $24M in losses (up from $21M)

● Splunk: $950M in revenue, $355M in losses (up from $279M)

● Tableau: $827M in revenue, $144M in losses (up from $84M)

*Data as per june 2017

5

Big Data is not easy

6

Big Data is not easy

7

Big Data is not easy

Gartner’s top obstacles for big data success were:

● Determining how to get value from Big data

● Most companies are not set up culturally or organizationally to succeed, wishing

themselves agile and hoping data silos will disappear “magically”

● Technical expertise is lacking in areas like agile model development and deployment to

provide quick turnarounds.

If only people were as malleable as data

8

Big Data is not easy

This talk is to address the last problem - “Democratising”

large scale machine learning model deployment and model

scoring (in near real time)

* Hidden technical debt in machine learning systems - NIPS 2015

01

02

03

04

05

Business case

First solution

Problems faced

Better solution

Demo

06

07

Conclusion

Questions

10

● A better than random model has revenue generating potential from day one.Hence try to build a

robust data science pipeline where models can be quickly iterated on

● Pyspark models *CAN be deployed in a Scala Pipeline.

● Spark Models CAN be scored in “near” real time using external tools without paying the spark

“distributed tax” i.e. latencies associated with spark execution plan.

● Spark Models CAN be dockerized and hence can leverage on best practices refined out of years

of software engineering i.e. CI/CD, A/B tests etc

● And all the above can be done in a matter of minutes i.e. model creation to exposing the model

@scale as an API.

● GDPR compliant features CAN generate models with 0.88 ROC

* vanilla spark has model persistence available since 2.0.0

Key Takeaways

11

Business use case

Is real time segmentation of the user into buy vs defer

clusters using GDPR compliant features possible on the

website?

12

Business use case

But first, we need to collect data to act on it in real time

13

14

15

Production numbers

● ~ 23 million events per day

● ~ 140 G of granular event data collected

● cost of 6 - 12 euro per day

ds

16

First solution

17

Business use case

So now that we have the real time pipeline can we train and

score our ML model ?

18

First Model

The first model was a markov chain on the sequence of

webpages visited

19

First Solution

Aws lambda based serverless architecture

20

Problems faced

● Had to hack core R libraries to bring down the 212 MB ML model library

to fit the 50MB compressed AWS Lambda restriction

● R is not support by AWS lambda, hence had to hack through the restriction

● Every time front end would change, our models needs to change and old

data cannot be used to retrain the model.

21

Learnings

The effort was totally worth it as first hand one could see the scale and

economies of “serverless”

“If computers of the kind I have advocated become the computers of the future,

then computing may someday be organized as a public utility just as the telephone

system is a public utility... The computer utility could become the basis of a new

and important industry.” -John McCarthy(1961 @ MIT Centinnial)

22

Better solution

Requirements:

● Decrease the time for the models to move from notebook to production

● Super Scalable - Handling Terabytes should be a cakewalk

● Has to eliminate recoding of Spark feature pipelines and models from

research to production i.e. my pyspark model should be deployable into a

Scala pipeline with zero or minimal code changes

● Serving/inference has to be superfast for spark models

23

Better solution

Requirements technical analysis

● For model serving to be super fast, it was clear that inference needed to

be outside the realms of Spark context.

● Has to be completely vendor neutral i.e. create a model in AWS and

should be able to deploy the model in a pipeline on GCP and vice-versa.

● True test of serialization/portability: can I zip the model and send it to my

coworker in an email

24

Why is Spark Slow in scoring

25

Available Options

26

Mleap

First things first: Mleap was possible due to the good work of

Hollin Wilkins and Mikhail Semeniuk

27

What is Mleap

● Is a common serialization format and execution engine for machine learning

pipelines.

● Supports Spark,Scikit-learn, tensorflow

● Once you serialize the models you can run it in any platform … AWS, GCP ...

● For most parts you don’t have to modify any internal code except TF

● Is completely open source, so you can open the hood.

28

Mleap

First things first:

Mleap was possible due to the good work of

Hollin Wilkins and Mikhail Semeniuk

Source: Mleap docs

29

Mleap

Source: mleap docs

30

Mleap Serialization - Bundle.ml

● Provides common serialization for both Spark and Mleap

● 100% protobuf/JSON based for easy reading, compact data and portability

● Can be written to zip files and hence completely portable.

31

Mleap

32

33

Demo
What will you see:

● Build a Pyspark model on Kaggle Data in a Jupyter notebook.

● Export the serialized model into a JSON and protobuf format (with just

addition of a few libraries)

● Load the serialized pipeline into a docker container for near real model

serving using a REST scala interface. (takes about 50ms for a model that

spark serves in 1.5 seconds)

● Serve the Docker container from a Scalable AWS REST API in minutes

34

Results Achieved
Using GDPR compliant features .88 ROC and 94% on precision recall using

a Pyspark model using a Single Random Forest Model (with no fancy

model stacking) served in under ~50 ms trained on 100G of event data

35

Recsys15 Winning Method

36

37

38

Anecdote

The works of highest quality were all produced by the group being graded for quantity.

39

References

● https://github.com/polya20/presentation

● https://github.com/combust/mleap

● https://github.com/romovpa/ydf-recsys2015-challenge

● https://github.com/kubeflow/kubeflow

● https://github.com/snowplow/snowplow

