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Big Data* is not easy

Gartner found just 14% of companies surveyed had big data 

projects in production in 2015 and unchanged from the year 

before and slowly inching towards 15% in year 2016

*Big Data - my apologies for using the term 

*Big Data ~ Large unstructured and structured data that can’t fit on a single node
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Big Data is not easy

● Cloudera: $261M in revenue, $187M in losses (down from $205M the year 

before, the only company to narrow its loss)

● Hortonworks: $184M in revenue, $251M in losses (up from $180M the year 

before)

● Alteryx: $85M in revenue, $24M in losses (up from $21M)

● Splunk: $950M in revenue, $355M in losses (up from $279M)

● Tableau: $827M in revenue, $144M in losses (up from $84M)

*Data as per june 2017
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Big Data is not easy

Gartner’s top obstacles for big data success  were:

● Determining how to get value from Big data

● Most companies are not set up culturally or organizationally to succeed, wishing 

themselves agile and hoping data silos will disappear “magically”

● Technical expertise is lacking in areas like agile model development and deployment to 

provide quick turnarounds.

If only people were as malleable as data 
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Big Data is not easy

This talk is to address the last problem - “Democratising” 

large scale machine learning model deployment  and model 

scoring (in near real time) 

* Hidden technical debt in machine learning systems - NIPS 2015
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● A better than random model has revenue generating potential from day one.Hence try to build a 

robust data science pipeline where models can be quickly iterated on

● Pyspark models *CAN be deployed in a Scala Pipeline.

● Spark Models CAN be scored in “near” real time using external tools without paying the spark 

“distributed tax” i.e. latencies associated with spark execution plan.

● Spark Models CAN be dockerized and hence can leverage on best practices refined out of years 

of software engineering i.e. CI/CD, A/B tests etc

● And all the above can be done in a matter of minutes i.e. model creation to exposing the model 

@scale as an API.

● GDPR compliant features CAN generate models with 0.88 ROC

* vanilla spark has model persistence available since  2.0.0

Key Takeaways
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Business use case

Is real time segmentation of the user into buy vs defer 

clusters using GDPR compliant features possible on the 

website? 
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Business use case

But first, we need to collect data to act on it in real time
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Production numbers

● ~ 23 million events per day

● ~ 140 G of granular event data collected

● cost of  6 - 12 euro per day

ds
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First solution
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Business use case

So now that we have the real time pipeline can we train and 

score our ML model ?
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First Model

The first model was  a markov chain on the sequence of 

webpages visited
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First Solution

Aws lambda based serverless architecture 



20

Problems faced

● Had to hack core R libraries to bring down the 212 MB ML model library

to fit the 50MB compressed AWS Lambda restriction

● R is not support by AWS lambda, hence had to hack through the restriction

● Every time front end would change, our models needs to change and old

data cannot be used to retrain the model.
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Learnings

The effort was totally worth it as first hand one could see the scale and

economies of “serverless”

“If computers of the kind I have advocated become the computers of the future, 

then computing may someday be organized as a public utility just as the telephone 

system is a public utility... The computer utility could become the basis of a new 

and important industry.”  -John McCarthy(1961 @ MIT Centinnial ) 
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Better solution

Requirements:

● Decrease the time for the models to move from notebook to production

● Super Scalable - Handling Terabytes should be a cakewalk

● Has to eliminate recoding of Spark feature pipelines  and models from 

research to production i.e. my pyspark model should be deployable into a 

Scala pipeline with zero or minimal code changes

● Serving/inference has to be superfast for spark models
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Better solution

Requirements technical analysis

● For model serving to be super fast, it was clear that  inference needed  to 

be outside the realms of Spark context.

● Has to be completely vendor neutral i.e.  create a model in AWS and 

should be able to deploy the model in a pipeline on GCP and vice-versa. 

● True test of serialization/portability:  can I zip the model and send it to my 

coworker in an email
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Why is Spark Slow in scoring
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Available Options
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Mleap

First things first: Mleap was  possible due to the good work  of         

Hollin Wilkins and Mikhail Semeniuk
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What is Mleap 

● Is a common serialization format and execution engine for machine learning 

pipelines.

● Supports Spark,Scikit-learn, tensorflow

● Once you serialize the models you can run it in any platform … AWS, GCP ...

● For most parts you don’t have to modify any internal code except TF

● Is completely open source, so you can open the hood.
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Mleap

First things first:

Mleap was  possible due to the good work of 

Hollin Wilkins and Mikhail Semeniuk

Source: Mleap docs
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Mleap

Source: mleap docs
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Mleap Serialization - Bundle.ml

● Provides common serialization for both Spark and Mleap

● 100% protobuf/JSON based for easy reading, compact data and portability

● Can be written to zip files and hence completely portable.
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Mleap
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Demo
What will you see:  

● Build a Pyspark model on Kaggle Data in a Jupyter notebook.

● Export the serialized model into a JSON and protobuf  format (with just 

addition of a few libraries)

● Load the serialized pipeline into a docker container for near real model 

serving using a REST scala interface. (takes about 50ms for a model that 

spark serves in 1.5 seconds)

● Serve the Docker container from a Scalable AWS REST API in minutes
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Results Achieved
Using GDPR compliant features .88 ROC and 94% on precision recall using 

a Pyspark model using a Single Random Forest Model (with no fancy 

model stacking) served in under ~50 ms trained on 100G of event data
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Recsys15 Winning Method
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Anecdote 

The works of highest quality were all produced by the group being graded for quantity.
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